
Exploring the potential of tropical fruits waste for livestock feed: effect of germinating durian seed on nutrients, antinutrients, and bioactive compound

Prima, A.*, Purnomoadi, A. and Prayitno, E.

Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.

Prima, A., Purnomoadi, A. and Prayitno, E. (2026). Exploring the potential of tropical fruits waste for livestock feed: effect of germinating durian seed on nutrients, antinutrients, and bioactive compound. International Journal of Agricultural Technology 22(1):389-400.

Abstract The highest dry matter content was found without germination followed seed sprouts at 6 cm and 3 cm. The organic matter and total carbohydrate were lowest in germinated seed sprouts 3 cm compared to 6 cm and without germination. The crude protein and fiber content were highest in seed sprouts 6 cm compared to 3 cm and without germination. The oxalate acid, CPAs, antioxidant activity and flavonoid were lower in germinated seed sprouts 6 cm, followed by 3 cm and on the seed without germination. Phenol in germinated seed sprouts 6 and 3 cm was higher compared to the seed without germination. The flavonoid was lower in germinated seed sprouts 6 and 3 cm compared to the seed without germination. Tannin in the seed without germination and germinated seed sprouts 3 cm was the highest as compared to germinated seed sprouts 6 cm. Germination was suitable with the concept of sustainability. Germination can preserve the quality of bioactive chemicals while reducing antinutrients and increasing helpful nutrients. The germinated durian seed could be harvested when the length of sprout 3 cm.

Keywords: Feedstuff, Germination, Sprouts

Introduction

In recent years, there has been growing attention to the need to find sustainable solutions for managing agricultural waste and enhancing the nutritional value of livestock feed. Tropical fruits such as durian, which are well-known for their flavorful and varied nutritional profiles, frequently produce a significant number of residues, such as seeds, peels, and pulp leftovers. FAO (2023) reported Thailand, Malaysia and Indonesia as the key production countries could produce approximately 3 million tons per annum, globally traded quantities increased more than tenfold between 2003 and 2022. From a single durian fruit could generate 20% durian seeds (Sugiarto and Toana, 2018), Up

***Corresponding Author:** Prima, A; **Email:** ari.prima56@gmail.com

until now, these seeds have only been wasted, however, this waste might potentially be converted into biomass for animal feed.

Various studies on durian seeds show that the nutrient content contains 6-10% Crude Protein, 2.4-4.3% Crude Fat, 14% Crude Fiber, 60-80% carbohydrates, and 3-4% ash (Sugiarto and Toana, 2018; Baraheng and T. Karrila, 2019; Mangisah *et al.*, 2020) Based on the nutrient content, they have the potential to be used as a source of energy feed for livestock. However, although durian seeds have good potential to be used for feed, durian seeds contain anti-nutrients, namely cyclopropane fatty acid (CPFAs), and oxalic acid (Mangisah *et al.*, 2020). The CPFAs can interfere with the fat digestion process in livestock by inhibiting fatty acid desaturation and steryl-CoA desaturation (Yu *et al.*, 2011). Meanwhile, oxalic acid can interfere with the absorption of calcium and decrease productivity of livestock (Goyal, 2019). These antinutrients can be overcome by processing by boiling. Mangisah *et al.* (2020) reported that boiling can reduce oxalic acid levels by up to 60% and reduce CPFAs by 20%. However, boiling method requires more cost and increase carbon footprint hence running counter to the idea of sustainability. Therefore, it is necessary to study a simple processing method that could be applicable for farmer, less cost and in line with sustainability concept, and naturally the durian seeds can be ingested without having a negative impact on livestock.

One simple method was germination. Germination was the process of growing a seed into a new plant. Germination of seeds was a bioprocess of emerging interest to improve nutritional and maintain the bioactive compounds, and decrease of antinutrients of seeds in a natural way (Gan *et al.*, 2017; Ohanenye *et al.*, 2020). To uphold the animal welfare highly recommended to feed the livestock with the high-quality feed not only to support the productivity but also the health status, and the components of bioactive compound in the feedstuff should be considered (Balasubramanian *et al.*, 2023). Regarding the authors literature search the information related to bioactive compound such as antioxidant, phenols, tannin and flavonoid of germinated durian seed still scarce. Therefore, the aim of this study was to investigate the viability of using durian seeds that germinated as a useful component in animal feed.

Materials and methods

Germinated durian seeds and experimental design

The durian seeds used in this study came from local durian on Java Island, Indonesia. Durian seeds were obtained from local fruit processing industries around Semarang, Central Java, Indonesia. The durian seeds were cleansed to

isolate them from trash and other contaminants before they germinated. Germination was done after cleaning. After cleaning, germination was carried out. Germination begins by making germination media using a plastic box measuring 10 cm long, 10 cm wide, and 5 cm high. The plastic box was given a cotton pad and 250 ml of water was added. On each germination media, 12 durian seeds were placed.

A completely randomized design was used in this study. There were 3 treatments, the first treatment was durian seeds that had not yet germinated (0 cm) as a control, the second treatment was durian seeds harvested at a sprout length of 3 cm, and the third treatment was durian seeds harvested at a sprout length of 6 cm. Each treatment received 10 replications. The harvested durian seeds were ground using a grinder and the powder was sun drying for 3 days, after that, the samples were taken to be analyzed.

Nutrients and antinutrients content analysis

The dry matter (DM), crude protein (CP), ether extract (EE), and ash of durian seed were analyzed following the Association of Official Analytical Chemists (2005). Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined by Van Soest method (2018). Oxalic acid content was determined using titration method according to Sa *et al.* (2019) and CPFAs was analyzed by gas chromatography-mass spectrometry [GC-MS] method according to Lolli *et al.* (2018). Carbohydrate and hemicellulose were determined with the formula according to Xin *et al.* (2021).

$$\text{Total carbohydrate} = 100 - \text{EE} - \text{CP} - \text{ash}$$

$$\text{Hemicellulose} = \text{NDF} - \text{ADF}$$

Bioactive compound analysis

Antioxidant activity was analyzed using the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH RSA) method according to the guidelines of Baliyan *et al.* (2022). Phenols was analyzed using Folin-C (Folin and Ciocalteu) Colorimetric Method according to Kupina *et al.* (2019). Tannins was analyzed using UV-Vis Spectrometry according to Loum *et al.* (2020). Flavonoid was analyzed using colorimetric method according to Zubaydah *et al.* (2021).

Statistical analysis

The collected data were analyzed using analysis of variance according to Gomez and Gomez (1984) using SPSS 26 version. The significance level was

determined at 5%. If the parameter was significance, then continue to analyzed by Duncan multiple range test.

Results

Nutrients and antinutrients content

The result showed that obtaining the sprout with a length of 6 cm needed more time than the sprout length of 3 cm. Based on the data on nutrient content, the germination was affected on the dry matter content. The lowest dry matter content was in the germinated seed sprouts at 3 cm, followed by 6 cm, and the highest in without germination. The organic matter and total carbohydrate were lowest in germinated seed sprouts 3 cm compared to germinated seed sprouts 6 cm and without germination. Increasing the length of sprouts increased the crude fiber and protein content, the crude fiber and protein content was highest in sprouts 6 cm compared to 3 cm and without germination. The NDF content was similar in germinated seed sprouts 3 cm and 6 cm, but high compared to those without germination, however, the ADF was highest in germinated seed sprouts 6 cm, followed by 3 cm and the lowest on the seed without germination.

Table 1. The nutrients and antinutrient content of germinated durian seed

Nutrients content	The length of sprout			P Value
	0 cm	3 cm	6 cm	
Days for germination (day)	0.00 ± 0.00 ^a	4.40 ± 0.26 ^b	7.00 ± 0.33 ^c	0.000
Dry matter (%)	88.76 ± 0.07 ^c	87.11 ± 0.08 ^a	88.12 ± 0.18 ^b	0.000
Ash (%)	11.99 ± 0.47	12.67 ± 0.62	11.98 ± 0.48	0.407
Organic matter (%)	76.76 ± 0.43 ^b	74.43 ± 0.66 ^a	76.14 ± 0.44 ^b	0.012
Ether extract (%)	2.04 ± 0.24	1.92 ± 0.16	2.22 ± 0.20	0.593
Crude protein (%)	7.44 ± 0.19 ^a	8.38 ± 0.14 ^b	8.24 ± 0.18 ^b	0.000
Total carbohydrate (%)	78.73 ± 0.55 ^b	77.26 ± 0.58 ^a	77.81 ± 0.58 ^b	0.020
Crude fibre (%)	3.27 ± 0.14 ^a	3.46 ± 0.06 ^a	4.17 ± 0.14 ^b	0.000
NDF (%)	30.77 ± 1.86 ^a	42.65 ± 0.56 ^b	44.00 ± 1.25 ^b	0.000
ADF (%)	5.43 ± 0.31 ^a	13.48 ± 0.39 ^b	14.89 ± 0.99 ^c	0.000
Hemicellulose (%)	25.33 ± 1.83	29.17 ± 0.55	29.10 ± 1.16	0.074

^{a,b,c} Different superscript in the same line show significantly different (P>0.05)

NDF (Neutral Detergent Fibre)

ADF (Acid Detergent Fibre)

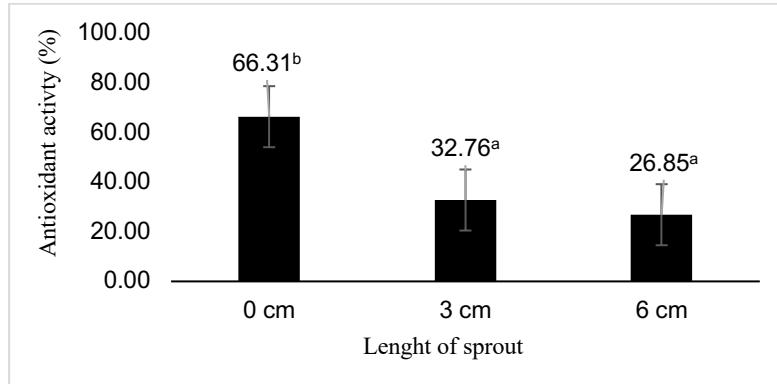
The germination process did not affect ash content and ether extract, however, the hemicellulose tended to be significant. Germination was affected on the antinutrient content. Increasing the length of sprout on germinated seed was decreased the oxalate acid and cyclopropane fatty acids. The lowest oxalate

acid and cyclopropane fatty acids (CPAs) was shown in germinated seed sprouts 6 cm, followed by 3 cm and on the seed without germination.

Table 2. The antinutrients content of germinated durian seed

Antinutrients content	The length of sprout			P Value
	0 cm	3 cm	6 cm	
Oxalate acid (%)	7.35 ± 0.05 ^c	3.20 ± 0.04 ^b	2.51 ± 0.03 ^a	0.000
Cyclopropane fatty acids (%)	5.88 ± 0.04 ^c	2.40 ± 0.03 ^b	1.51 ± 0.02 ^a	0.000

^{a,b,c} Different superscript in the same line show significantly different (P>0.05)


Bioactive compounds

The germination was affected on the antioxidant activity in germinated durian seed. Antioxidant activity in germinated seed sprouts 6 and 3 cm was lowest compared to the seed without germination. Phenol in germinated seed sprouts 6 and 3 cm was high compared to the seed without germination, however, otherwise flavonoid was low in germinated seed sprouts 6 and 3 cm compared to the seed without germination. Tannin level in the seed without germination was similar with the germinated seed sprouts 3 cm, the tannin level of both was highest compared to germinated seed sprouts 6 cm.

Table 3. The bioactive compounds of germinated durian seed

Antinutrients content	The length of sprout			P Value
	0 cm	3 cm	6 cm	
Flavonoid (mg QE/100 g)	8.53 ± 1.05 ^b	4.28 ± 0.05 ^a	4.11 ± 0.55 ^a	0.000
Phenol (mg GAE/100g)	4.34 ± 0.36 ^a	7.57 ± 0.71 ^b	7.83 ± 0.42 ^b	0.000
Tannin (mg GAE/100g)	65.01 ± 2.89 ^b	59.64 ± 1.18 ^b	40.87 ± 3.25 ^a	0.000

^{a,b} Different superscript in the same line show significantly different (P>0.05)

Figure 1. Antioxidant activity of germinated durian seed

Discussion

Large seeds go through three stages of water uptake during germination. During the first phase, the dry seed material quickly absorbs water until the entire matrix and cell contents are filled. Water consumption was then restricted in the second phase as the sprouts started to develop. Then, while not as much as in the first phase, there was another increase in water extraction in the third phase (Nonogaki *et al.*, 2010). Based on that theory, that was the reason the dry matter content was lower in the germinate seed sprout 3 cm than 6cm. The result of this study was in line with the study reported by Zinia *et al.* (2022) on germinated soybeans on day 4th the length of the sprout was 3 cm and on day 6th the length of the sprout was more than 5 cm, and the dry matter content decrease during the germination time.

The lowest content of organic matter and carbohydrates in germinated seed sprouts 3 cm was due to the important role of carbohydrates in the initial phase of the germination process. Organic matter including carbohydrates is the main component that is broken down at the beginning of the germination process. Carbohydrates are needed for the sprout formation process and the breakdown of endosperm cell walls so that sprouts can grow (Ma *et al.*, 2017). Carbohydrates that decrease during germination are generally followed by an increase in crude protein and crude fiber. Like the result of the germinating seed was 3 cm and 6 cm the crude protein fiber was higher than the seed without germination. This is because these carbohydrates are used for the synthesis of protein into amino acids for sprout growth, and protein increases rapidly after 72 hours after germination (Nkhata *et al.*, 2018). The result of this study was in line with the study reported by Uppal and Bains (2012) which was studied various legumes, that germination could increase crude protein.

Carbohydrates are also used during the germination process to form pectic polysaccharides and cellulose which causes an increase in the crude fiber content in the germinated seeds (Hettiarachchi and Gunathilake, 2023). Polysaccharides synthesis from carbohydrate could impact on NDF and ADF, the longer germination time the higher NDF and ADF content (Megat *et al.*, 2016). The ADF content was highest in germinated seeds at 6 cm, it was allegedly because the cell walls began to strengthen the roots of sprouts so that the content of insoluble fiber increased, this was also confirmed by the hemicellulose content which tended to increase. The results of this study are different from those reported by Duenas *et al.* (2016) in that in germinated lentils the NDF and ADF content decreased. It shows that seed varieties and characteristics respond differently during germination, it depends on the structure, composition, and cell tissue of the seed.

The germination was an effective way to decrease oxalate acid in seeds (Gunathunga *et al.*, 2024). During germination, the oxalate acid was catabolized by oxalate oxidase into carbon dioxide, an impact decreasing the oxalate acid in the seed (Pal *et al.*, 2016). That information could explain the reduction of oxalate acid in germinated durian seeds with different lengths of sprouts. The result of this study was similarly reported by Anaemene and Fadupin (2022) in legumes that germination could decrease 89% of oxalate acid in germinated legumes during 48 hours compared to 24 hours. Enzyme cyclopropane fatty acid synthase (CPS) may be expressed to create CPA. S-adenosyl-Met is needed as a methylene group donor for CPS to convert a monounsaturated fatty acid that has been esterified to phosphatidylethanolamine (PE) or phosphatidylcholine (PC) into Cyclopropane fatty acids (Yu *et al.*, 2019). It was suspected that during the germination time the CPS enzyme activity also decreases so that the CPAs content also decreases as the germination process progresses.

Proteins and carbohydrates are broken down in the early stages of germination. As a result, bound phenolics conjugated with the components of the cell wall are also liberated. As the germination period lengthens, more plant cells divide, construct new cell walls, and secrete the synthesized soluble phenolics to the cell wall to create new bound phenolics (Gan *et al.*, 2017). That theory also inline with the result of this study, the length of the germination time and sprout of seed the increase the phenol content of germinated durian seed.

Tannin content of durian seed without germination and germinated seed sprouts 3 cm was similar, however in germinated seed sprout 6 cm the tannin content was lower. It was caused the catabolic enzyme was active with increase the time of germination. Numerous catabolic enzymes are activated during germination, most notably polyphenol oxidase, which catalyzes the breakdown of polyphenolic substances. Consequently, phenoloxidase enzymes hydrolyze tannins, causing a decrease in tannin content in germinated seed (Avezum *et al.*, 2022; Liu *et al.*, 2022). The result of this study was not in line with Anaemene and Fadupin (2022) who study in legumes and Bassey *et al.* (2023) who study in cereals, they reported that the tannin content was significantly decrease after 24 hours until 72 hours of germination. The reduction of tannin content in seed was affected by differences in the duration of germination, the temperature conditions applied, and the types of seed (Gunathunga *et al.*, 2024).

Antioxidant capacity and total flavonoid content were known to be strongly correlated; the higher the antioxidant capacity, the more flavonoids that were extracted from plants (Zhang *et al.*, 2011; Bordin-Viera *et al.*, 2023). That report also inline with the result of this study, the trend of flavonoid and antioxidant was decrease in germinated durian seed compare to without germination. As a part of their growing process, seeds expel gas and water during germination. The

content of certain flavonoids in the seeds may drop as a result of dissolving in the released water or becoming stuck in gaseous form (Pinheiro *et al.*, 2021). Based on that explanation, the length of the sprouts the longer the time to germinate, followed by the time suspected the flavonoid content was released in the water or became stuck in gaseous form and the effect on decreased flavonoid content and antioxidant activity.

Based on the result of the nutrients content of germinated durian seed were almost similar with rice bran and corn bran. Nuraina *et al.* (2020) reported that the rice bran was containing 86.6% of dry matter, 11.1% of ash, 8.0% of crude protein, 3.9% of crude fiber and, 8.0% of crude protein. The corn bran was containing 90.4% of dry matter, 2.4% of ash, 7.9% of crude protein, 3.8% of crude fat and, 6.9% of crude fiber. Based on that the germinated durian seed could used as a feedstuff for livestock such as the rice bran and corn bran. Besides the nutrient content, the antinutrient was decreased more than 50% with germinated method, and the feedstuff containing 1-3% was no negative effect in livestock such as ruminants (Goyal, 2018). The bioactive compound such as tannin that origin from tropical plant was effectively affect on reduce the methane emission in ruminants (Cardoso-Guiterrez *et al.*, 2021). The other bioactive compound such as phenol and flavonoid Phenolic compounds carry various pleiotropic functions including antibacterial, antioxidant, anti-inflammatory, antiviral, hepatoprotective, anti-allergic, antithrombotic, oncostatic, and immune-modulating activities, and could have a beneficial effect not only on livestock productivity but also on health and welfare (Hajam *et al.*, 2020; Mahfuz *et al.*, 2021). Based on that information, therefore the germinated durian seed could be potential to use as a feedstuff for a livestock. However, it was needed more research through in vitro and in vivo method to have better understanding the maximum level of durian seed could be given for the livestock such as poultry and ruminants livestock.

Germination was an easy and cheap method to increase the quality of nutrient content of tropical fruit seeds such as durian, and this method was suitable with the concept of sustainability. Germination could increase beneficial nutrients such as organic matter, protein, crude fiber, carbohydrate and decrease the antinutrients, and maintain the quality of bioactive compounds. The germinated durian seed could be harvest when the length of sprout 3 cm.

Acknowledgements

The authors want to thank Universitas Diponegoro for funding this study. This study was part of the grant research scheme of Research of International Publication (RPI) with grant number: 609-76/UN7.D2/PP/VIII/2023.

Conflicts of interest

The authors declare no conflict of interest.

References

Association of Official Analytical Chemist (2005). Official Methods of Analysis, 18th Ed. Gaithersburg USA.

Anaemene, D. and Fadupin, G. (2022). Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. *Applied Food Research*. 2:1-6 <https://doi.org/10.1016/j.afres.2022.100059>

Avezum, L., Rondet, E., Mestres, C., Achir, N., Madode, Y., Gibert, O., Lefevre, C., Hemery, Y., Verdeil, J. and Rajjou, L. (2023). Improving the nutritional quality of pulses via germination. *Food Reviews International* 39:6011-6044. <https://doi.org/10.1080/87559129.2022.2063329>

Balasubramanian, B., Liu, W. and Kim, I. H. (2023). Application of natural bioactive compounds in animal nutrition. *Frontiers in Veterinary Science* 10:1-3. <https://doi.org/10.3389/fvets.2023.1204490>

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P. and Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of *Ficus religiosa*. *Molecules*, 27:1-19. <https://doi.org/10.3390/molecules27041326>

Baraheng, S. and Karrila, T. (2019). Chemical and functional properties of durian (*Durio zibethinus* Murr.) seed flour and starch. *Food Bioscience* 30:1-8. <https://doi.org/10.1016/j.fbio.2019.100412>

Bassey, S. O., Chinma, C. E., Ezeocha, V. C., Adedeji, O. E., Jolayemi, O. S., Alozie-Uwa U. C., Adie, I. E., Ofem, S. I., Adebo, J. A. and Adebo, O. A. (2023). Nutritional and physicochemical changes in two varieties of fonio (*Digitaria exilis* and *Digitaria iburua*) during germination. *Heliyon*. 9:1-12. <https://doi.org/10.1016/j.heliyon.2023.e17452>

Bordin-Viera, V., Piovesan, N., Mello, R. D. O., Barin, J. S., Fogaça, A. D. O., Bazzi, C. A., Flores, E. M. D. M., Costa, A. C. D. S., Pereira, D. E., Soare, J. K. B. and Hashime K. E. (2023). Ultrasonic_assisted extraction of phenolic compounds with evaluation of red onion skin (*Allium cepa L.*) antioxidant capacity. *Journal of Culinary Science & Technology*, 21:156-172. <https://doi.org/10.1080/15428052.2021.1910095>

Cardoso-Gutierrez, E., Aranda-Aguirre, E., Robles-Jimenez, L. E., Castelán-Ortega, O. A., Chay-Canul, A. J., Foggi, G., Angeles-Hernandez, J. C., Vargas-Bello-Perez, E. and González-Ronquillo, M. (2021). Effect of tannins from tropical plants on methane production from ruminants: A systematic review. *Veterinary and Animal Science*, 14:1-12. <https://doi.org/10.1016/j.vas.2021.100214>

Duenas, M., Sarmento, T., Aguilera, Y., Benitez, V., Molla, E., Esteban, R. M., and Martín-Cabrejas, M. A. (2016). Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (*Phaseolus vulgaris* L.) and lentils (*Lens culinaris* L.). *LWT-Food Science and Technology*, 66: 72-78. <http://dx.doi.org/10.1016/j.lwt.2015.10.025>

FAO (2023). Durian Global Trade Overview 2023. Rome, pp.7-10

Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q. and Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. *Trends in Food Science & Technology*, 59:1-14. <https://doi.org/10.1016/j.tifs.2016.11.010>

Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. 2nd ed. New York, John Wiley and Sons, pp.28-192

Goyal, M. (2018). Oxalate accumulation in fodder crops and impact on grazing animals-A review. *Forage Res*, 44:152-158.

Gunathunga, C., Senanayake, S., Jayasinghe, M. A., Brennan, C. S., Truong, T., Marapana, U. and Chandrapala, J. (2024). Germination Effects on Nutritional Quality: A Comprehensive Review of Selected Cereal and Pulse Changes. *Journal of Food Composition and Analysis*, 128:1-16. <https://doi.org/10.1016/j.jfca.2024.106024>

Hajam, Y. A., Rai, S., Kumar, R., Bashir, M. and Malik, J. A. (2020). Phenolic compounds from medicinal herbs: their role in animal health and diseases—a new approach for sustainable welfare and development. *Plant Phenolics in Sustainable Agriculture*, 1:221-239. https://doi.org/10.1007/978-981-15-4890-1_10

Hettiarachchi, H. A. C. O. and Gunathilake, K. D. P. P. (2023). Physicochemical and functional properties of seed flours obtained from germinated and non-germinated *Canavalia gladiata* and *Mucuna pruriens*. *Heliyon*, 9:1-12. <https://doi.org/10.1016/j.heliyon.2023.e19653>

Kupina, S., Fields, C., Roman, M. C. and Brunelle, S. L. (2019). Determination of total phenolic content using the Folin-C assay: single-laboratory validation, first action 2017.13. *Journal of AOAC International*, 101:1466-1472.

Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y. and Chen Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. *Trends in Food Science & Technology*, 123:187-197. <https://doi.org/10.1016/j.tifs.2022.02.029>

Lolli, V., Marseglia, A., Palla, G., Zanardi, E. and Caligiani, A. (2018). Determination of cyclopropane fatty acids in food of animal origin by ¹H NMR. *Journal of Analytical Methods in Chemistry*, 2018:1-9. <https://doi.org/10.1155/2018/8034042>

Loum, J., Byamukama, R. and Wanyama, P. A. G. (2020). UV–Vis Spectrometry for Quantitative Study of Tannin and Flavonoid Rich Dyes from Plant Sources. *Chemistry Africa* 3:449-455. <https://doi.org/10.1007/s42250-020-00135-6>

Ma, Z., Bykova, N. V. and Igamberdiev, A. U. (2017). Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. *The Crop Journal*, 5:459-477. <https://doi.org/10.1016/j.cj.2017.08.007>

Mahfuz, S., Shang, Q. and Piao, X. (2021). Phenolic compounds as natural feed additives in poultry and swine diets: A review. *Journal of Animal Science and Biotechnology*, 12:1-18. <https://doi.org/10.1186/s40104-021-00565-3>

Mangisah, I., Ismadi, V. D. Y. B., Sukamto, B., Wahyono, F. and Sugiharto, S. (2020). Durian seed meal for commercial layers: performance, nutrient retention and egg quality. *Journal of the Indonesian Tropical Animal Agriculture*, 45:298-304. <https://doi.org/10.14710/jitaa.45.4.298-304>

Megat, R. M. R., Azrina, A. and Norhaizan, M. E. (2016). Effect of germination on total dietary fibre and total sugar in selected legumes. *International Food Research Journal*, 23:257-261.

Nkhata, S. G., Ayua, E., Kamau, E. H. and Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. *Food science & nutrition*, 6:2446-2458. <https://doi.org/10.1002/fsn3.846>

Nonogaki, H., Bassel, G. W. and Bewley, J. D. (2010). Germination—still a mystery. *Plant Science*, 179:574-581. <https://doi.org/10.1016/j.plantsci.2010.02.010>

Nuraina, N., Hamidah, A. N., Despal, D. and Taufik, E. (2020). Farmer Satisfaction on Concentrate Feed Produced by Dairy Feed Mill Cooperative: A Case Study. *Jurnal Ilmu Nutrisi dan Teknologi Pakan*, 18:81-88. <http://dx.doi.org/10.29244/jintp.18.3.81-88>

Ohanenye, I. C., Tsopmo, A., Ejike, C. E. and Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. *Trends in Food Science & Technology*, 101:213-222. <https://doi.org/10.1016/j.tifs.2020.05.003>

Pal, R. S., Bhartiya, A., Arun, K. R., Kant, L., Aditya, J. P. and Bisht, J. K. (2016). Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram. *Journal of food science and technology*, 53:337-347.

Pinheiro, S. S., Anunciação, P. C., de Morais C. L., Della, L. C. M., de Carvalho, C. W. P., Queiroz, V. A. V. and Sant'Ana, H. M. P. (2021). Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (*Sorghum bicolor* L.). *Food Chemistry*, 345:1-8. <https://doi.org/10.1016/j.foodchem.2020.128775>

Sa, R. D., de Oliveira, S. A. S. C., Padilha, R. J. R., Alves, L. C. and Randau, K. P. (2019). Oxalic acid content and pharmacobotany study of the leaf blades of two species of Annona (*Annonaceae*). *Flora*, 253:10-16. <https://doi.org/10.1016/j.flora.2019.02.011>

Sugiarto, S. and Toana, N. M. (2018). The effect of durian (*Durio zibethinus Murr*) seed meal on nutritive value of the diet, performance and carcass percentage of broiler chickens. *Livestock Research for Rural Development*, 30:1-9. <http://www.lrrd.org/lrrd30/8/sugia30135.html>

Uppal, V. and Bains, K. (2012). Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. *Journal of food science and technology*, 49:184-191.

Van Soest, P J. (2018). *Nutritional Ecology of the Ruminant*. 2nd Ed. Cornell University Press.

Xin, H., Khan, N. A., and Yu, P. (2021). Steam pressure induced changes in carbohydrate molecular structures, chemical profile and in vitro fermentation characteristics of seeds from new *Brassica carinata* lines. *Animal Feed Science and Technology*, 276:1-10. <https://doi.org/10.1016/j.anifeedsci.2021.114903>

Yu, X. H., Cai, Y., Chai, J., Schwender, J. and Shanklin, J. (2019). Expression of a Lychee phosphatidylcholine: diacylglycerol choline phosphotransferase with an *Escherichia coli* cyclopropane synthase enhances cyclopropane fatty acid accumulation in *Camelina* Seeds. *Plant physiology*, 180:1351-1361. <https://doi.org/10.1104/pp.19.00396>

Yu, X. H., Rawat, R. and Shanklin, J. (2011). Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. *BMC Plant Biology*, 11:1-10. <https://doi.org/10.1186/1471-2229-11-97>

Zhang, D., Chu, L., Liu, Y., Wang, A., Ji, B., Wu, W., Zhou, F., Wei, Y., Cheng, Q., Cai, S., Xie, L. and Jia, G. (2011). Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. *Journal of agricultural and food chemistry*, 59:10277-10285. <https://doi.org/10.1021/jf201773q>

Zinia, S. A., Nupur, A. H., Karmoker, P., Hossain, A., Jubayer, M. F., Akhter, D. and Mazumder, M. A. R. (2022). Effects of sprouting of soybean on the anti-nutritional, nutritional, textural and sensory quality of tofu. *Heliyon*, 8:1-8. <https://doi.org/10.1016/j.heliyon.2022.e10878>

Zubaydah, W. O. S., Sahumena, M. H., Fatimah, W. O. N. and Arba, M. (2021). Determination of antiradical activity and phenolic and flavonoid contents of extracts and fractions of jackfruit (*Artocarpus heterophyllus* Lamk) seeds. *Food Research*, 5:36-43. [https://doi.org/10.26656/fr.2017.5\(3\).563](https://doi.org/10.26656/fr.2017.5(3).563)

(Received: 26 June 2024, Revised: 2 May 2025, Accepted: 10 May 2025)